
PCLD-780 PCLD-880

Screw Terminal Board Industrial Wiring Terminal Board w/Adapter

Features

- Pin to pin design
- Low-cost universal screw-terminal boards for industrial applications
- 40 terminal points for two 20-pin flat cable connector ports
- Reserved space for signal-conditioning circuits such as low-pass filter, voltage attenuator and current-to-voltage conversion
- Table-top mounting using nylon standoffs. Screws and washers provided for panel or wall mounting

PCLD-780 only

- Screw-clamp terminal-blocks allow easy and reliable connections
- Dimensions: 102 x 114 mm (4.0" x 4.5")

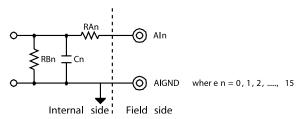
PCLD-880 only

- Supports PC-LabCard[™] products with DB-37 connectors
- Industrial-grade terminal blocks (barrier-strip) permit heavy-duty and reliable connections
- Dimensions: 221 x 115 mm (8.7" x 4.5")

Introduction

PCLD-780 and PCLD-880 universal screw-terminal boards provide convenient and reliable signal wiring for PC-LabCard™ products with 20-pin flat-cable connectors. PCLD-880 is also equipped with a DB37 connector to support PC-LabCard™ products with DB37 connectors.

PCLD-780 and PCLD-880 let you install passive components on the special PCB layout to construct your own signal-conditioning circuits.


You can easily construct a low-pass filter, attenuator or current-to-voltage converter by adding resistors and capacitors onto the board's circuit pads.

Applications

- Field wiring for analog and digital I/O channels of PC-LabCard™ products which employ the standard 20-pin flat cable connectors or DB37 connectors (only PCLD-880)
- Signal conditioning circuits can be implemented as illustrated in the following examples:

a) Straight-through connection (factory setting)

 $RAn = 0\Omega$ jumper

RBn = noneCn = none

b) 1.6 kHz (3dB) low pass filter

 $\begin{aligned} \textit{RAn} &= 10 \; \textit{K}\Omega \\ \textit{RBn} &= \textit{none} \\ \textit{Cn} &= 0.01 \Omega \textit{F} \\ \text{f3dB} &= \frac{1}{2\pi R AnCn} \end{aligned}$

c) 10 : 1 voltage attenuator:

 $RAn = 9 \text{ K}\Omega$ $RBn = 1 \text{ K}\Omega$ Cn = none $Attenuation = \frac{RBn}{RAn + RBn}$ (Assume source impedance << 10 K\Omega)

d) $4 \sim 20$ mA to $1 \sim 5$ VDC signal converter:

RAn = 0 Ω (short) RBn = 250 Ω (0.1% precision resistor) Cn = none

Pin Assignments

CN5 (PCLD-880 only) АЗ 21 22 A4 A6 A5 Α9 A11 A13 26 A14 9 10 A17 A18 A19 29 A20 30 12 B1 B3 B5 B7 B9 B11 В5 13 14 32 В7 33 B11 16 17 B13 36 37 18 B15 B18

Ordering Information

PCLD-780 Screw terminal Board, two 1m 20-pin flat cables (PCL-10120-1)
PCLD-880 Industrial Wiring Terminal Board, two 1m 20-pin flat cables (PCL-10120-1), and one PCL-10501 adapter (20-pin analog flat connector to DB37 connector)
PCL-10137-1 DB37 cable assembly, 1m
PCL-10137-2 DB37 cable assembly, 2m
PCL-10137-3 DB37 cable assembly, 3m