PCI-1240U

4-axis Universal PCI Stepping/Pulse-type Servo Motor Control Card

Features

- Independent 4-axis motion control
- Hand wheel and jog function
- 2/3-axis linear interpolation function .
- 2-axis circular interpolation function
- Continuous interpolation function •
- Programmable T/S-curve acceleration/deceleration rate
- Up to 4 MPPS output for each axis .
- Two pulse output types: CW/CCW or Pulse/Direction
- Up to 1 MHz encoder input for each axis
- Two encoder pulse input types: A/B phase or Up/Down
- Constant speed control
- Position management and software limit switch function .
- BoardID[™] switch

Introduction

Advantech introduces the PCI-1240U 4-axis Universal PCI (supports both 3.3 V and 5 V signal slot) stepping/pulse-type servo motor control card designed for general-purpose extreme motion applications. The PCI-1240U is a high-speed 4-axis motion control card for the PCI bus that simplifies stepping and pulse-type servo motor control, giving you added performance from your motors. The card's intelligent NOVA® MCX314-motion ASIC builds in a variety of motion control functions, such as 2/3-axis linear interpolation, 2axis circular interpolation, T/S-curve acceleration/deceleration rate and more. In addition, the PCI-1240U performs these motion control functions without processor loading during driving. For advanced applications, Advantech supplies Windows® DLL drivers and user-friendly examples to decrease your programming load. Moreover, through a free bundled PCI-1240U motion utility, you can complete configuration and diagnosis easily.

Specifications

Pulse Type Motion Control

- Motor Driver Support Pulse-type servo/stepping
- Number of Axes
- Interpolation
- Max. Output Speed
- Step Count Range ±2,147,483,646
- Pulse Output Type
- CW/CCW (2-pulse type) Position Counters
- Velocity Profiles
- Local I/O Machine Interfaces: Servo Driver Interfaces: Position Compare I/O: General Outputs:

PEL x 4. MEL x 4. ORG x 4 ALM x 4, RDY x 4, SVON x 4, INP x 4 CMP x 4 4

Encoder Interface

- Input Type
- Counts per Enc. Cycle
- Input Range
- 2,500 V_{DC} Isolation Protection
- Max. Input Frequency 1 MHz

- Δ
- - 2-axis linear, 3-axis linear, 2-axis circular
 - 4 Mpps

 - Pulse/Direction (1-pulse, 1-direction type), or
 - Range of Command, Range of Actual Position T-Curve, S-Curve

Quadrature (A/B phase or Up/Down)

- x1, x2, x4 (A/B phase only)
- 5~25 V

General Bus Type Certifications

CF

- 1 x 100-pin SCSI-II female
- Dimensions
- **Power Consumption**
- Humidity

Connectors

5 ~ 95% RH, non-condensing (IEC 68-2-3)

- Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ Storing Temperature
 - -20 ~ 85° C (-4 ~ 185° F)

Ordering Information

PCI-1240U 4-axis universal PCI stepping/pulse-type servo motor control card ADAM-3952 50-pin SCSI-II wiring terminal for DIN-rail mounting ADAM-39100 100p SCSI-II wiring terminal, DIN-rail mounting

Universal PCI V2.2

175 x 100 mm (6.9" x 3.9")

Typical: 5 V @ 850 mA

Max: 5 V @ 1 A

- PCI-1240 Wiring Board for Mitsubishi J2S series
- PCL-10251-1
- PCL-10251-3 100-pin SCSI to two 50-pin SCSI cable for PCI-1240U, 3m

AD\ANTECH **Motion Control**

All product specifications are subject to change without notice

- - - - ADAM-3952-J2S

 - 100-pin SCSI to two 50-pin SCSI cable for PCI-1240U, 1m

Feature Details

Programmable T/S-curve Acceleration and Deceleration

Each of four axes can be preset individually with S-curve or trapezoidal acceleration/ deceleration rates. When using S-curve acceleration to control driving speed, output pulse is generated in parabolic-shaped acceleration or deceleration curves, and the triangular curve phenomenon will not occur through the NOVA[®] MCX314-motion ASIC design concept.

Linear and Circular Interpolation

Any two or three axes can be selected to execute linear interpolation driving and any two axes can be selected to execute circular arc interpolation control. The interpolation speed range is from 1 PPS to 4 MPPS.

Powerful Position Management Function

Each axis is equipped with a 32-bit logical position counter and a 32-bit real position counter. The logical position counter counts the axis' pulse output number and the real position counter is recorded with the feedback pulse from the outside encoder or linear scale.

Applications

- General motion control (GMC)
- Packaging and assembly machinery
- Robotics and semiconductor manufacturing and measurement
- Precise X-Y-Z position and rotation control

	\frown		
		\sim	
VEX	1	51	VEX
EMG	2	52	NC
XLMT+	3	53	ZLMT+
XLMT-	4	54	ZLMT-
X_IN1	5	55	Z_IN1
X_1N2	6	56	Z_1N2
X_1N3	7	57	Z_IN3
YLMT+	8	58	ULM1+
YLMI-	9	59	ULMI-
Y_IN1	10	60	U_IN1
Y_1N2	11	61	U_IN2
Y_IN3	12	62	
A_INPUS	13	63	Z_INPU
	14	64	Z_ALARI
XECAN	10	00	ZEGAP
VECOD	10	00	ZEGAN
VECON	10	67	ZEGDP
VINOD	10	60	ZEUDIN
VINON	20	70	21100F
V INDOG	20	70	
	21	72	
VECAP	23	73	LIECAP
YECAN	24	74	LIECAN
YECRP	25	75	LIECRP
YECBN	26	76	LIECEN
YINOP	27	77	UINOP
YINON	28	78	UINON
XEXOP+	29	79	ZEXOP+
XEXOP-	30	80	ZEXOP-
YEXOP+	31	81	UEX0P+
YEXOP-	32	82	UEXOP-
GND	33	83	GND
XOUT4	34	84	ZOUT4
XOUT5	35	85	ZOUT5
XOUT6	36	86	ZOUT6
XOUT7	37	87	ZOUT7
XP+ P	38	88	ZP+ P
XP+ N	39	89	ZP+ N
XP-P	40	90	ZP-P
XP-N	41	91	ZP-N
GND	42	92	GND
YOUT4	43	93	UOUT4
YOUT5	44	94	UOUT5
YOUT6	45	95	UOUT6
YOUT7	46	96	UOUT7
YP+ P	47	97	UP+ P
YP+ N	48	98	UP+ N
YP-P	49	99	UP-P
YP-N	50	100	UP-N
	1		
	\smile	_	

Pin Assignments

Block Diagram

